Part1:Theoretical
M={(x,y)∈R2;0<x<y<1}
So we can calculate the Area of M
Area(M)=∫10∫1x1dydx=∫10|y|1xdx=∫10(1−x)dx=|x−x22|10dx=1−12=12
We pose Z=(X,Y) and thus z=(x,y)
fz(z)=∫101121{0≤y≤1}.{0≤x≤y}dz=∫102.1{0≤y≤1}.{0≤x≤y}dz={0ifz∉M2elif
Marginal densities calcule :
fx(x)=∫1xfz(z)dy={0ifx∉(0,y)2.∫1x1dy=2(1−x)elif
fy(y)=∫y0fz(z)dx={0ify∉(x,1)2.∫y01dy=2yelif
Independance or not ?
If x and y are independante : Fxy(x,y)=Fx(x).Fy(y)
We can calculate the 3 :
Fx(x)=∫fx(x)dx=∫2(1−x)dx=x(2−x)
Fy(y)=∫fy(y).dy=∫2y.dy=y2
Fxy(x,y)=∫∫fxy(x,y).dx.dy=∫∫2.dx.dy=∫2x.dy=2xy
We can conclude : Fxy(x,y)≠Fx(x).Fy(y)
Tha variables x and y are not independante.
Part2:Practical
create a sample :
x<-rep(NA,100000)
y<-rep(NA,100000)
for(i in 1:100000){
t<-runif(2)
x[i]<-min(t) #because x<y
y[i]<-max(t) #because y>x
}
z<-data.frame(cbind(x,y))
Fx(x):
vertical <- seq(0,1,length.out =100000 )
plot(sort(x),vertical,type="l",xlab="x",main="repartion function of x")
lines(vertical,vertical*(2-vertical),type="l",col="red")
The two curves merge, we can conclude the accuracy of the formula. Fx(x)=x(2−x) so fx(x)=2−2x
Fy(y):
plot(sort(y),vertical,type="l",xlab="y",main="repartion function of y")
lines(vertical,vertical^2,type="l",col="red")
The two curves merge, we can conclude the accuracy of the formula. Fy(y)=y2 so fy(y)=2y
fz(z):
library(ggplot2)
ggplot(z, aes(x=x, y=y) ) +
stat_density_2d(aes(fill = ..level..), geom = "polygon")
We can see that worth zero if z∉M and =2ifz∈M