Processing math: 100%

Part1:Theoretical

M={(x,y)R2;0<x<y<1}

So we can calculate the Area of M

Area(M)=101x1dydx=10|y|1xdx=10(1x)dx=|xx22|10dx=112=12

We pose Z=(X,Y) and thus z=(x,y)

fz(z)=101121{0y1}.{0xy}dz=102.1{0y1}.{0xy}dz={0ifzM2elif

Marginal densities calcule :

fx(x)=1xfz(z)dy={0ifx(0,y)2.1x1dy=2(1x)elif

fy(y)=y0fz(z)dx={0ify(x,1)2.y01dy=2yelif

Independance or not ?

If x and y are independante : Fxy(x,y)=Fx(x).Fy(y)

We can calculate the 3 :

Fx(x)=fx(x)dx=2(1x)dx=x(2x)

Fy(y)=fy(y).dy=2y.dy=y2

Fxy(x,y)=fxy(x,y).dx.dy=2.dx.dy=2x.dy=2xy

We can conclude : Fxy(x,y)Fx(x).Fy(y)

Tha variables x and y are not independante.

Part2:Practical

create a sample :

x<-rep(NA,100000)
y<-rep(NA,100000)

for(i in 1:100000){
  t<-runif(2)
  x[i]<-min(t) #because x<y
  y[i]<-max(t) #because y>x
}
z<-data.frame(cbind(x,y))

Fx(x):

vertical <- seq(0,1,length.out =100000 )
plot(sort(x),vertical,type="l",xlab="x",main="repartion function of x")
lines(vertical,vertical*(2-vertical),type="l",col="red")

The two curves merge, we can conclude the accuracy of the formula. Fx(x)=x(2x) so fx(x)=22x

Fy(y):

plot(sort(y),vertical,type="l",xlab="y",main="repartion function of y")
lines(vertical,vertical^2,type="l",col="red")

The two curves merge, we can conclude the accuracy of the formula. Fy(y)=y2 so fy(y)=2y

fz(z):

library(ggplot2)
ggplot(z, aes(x=x, y=y) ) +
  stat_density_2d(aes(fill = ..level..), geom = "polygon")

We can see that worth zero if zM and =2ifzM